

 Navigation

 	
 index

 	
 next |

 	tool 0.8.0 documentation

Welcome to Tool’s documentation!

Tool is a lightweight framework for building modular configurable applications.
It is intended to:

	be as unobtrusive as possible. No conventions except for APIs. The modules
are structured following their own logic;

	store configuration in ordinary Python structures, impose no limits on them
and support YAML input out of the box;

	encourage modularity by providing a simple but flexible layered API for
extensions with support for dependencies;

	stick to existing standards and APIs;

	combine existing components: Argh [http://pypi.python.org/pypi/argh] (argparse [http://docs.python.org/dev/library/argparse.html]) for commands, PyDispatcher [http://pypi.python.org/pypi/PyDispatcher/]
for signals;

	let user choose non-critical components but ship with batteries included:
Werkzeug [http://werkzeug.pocoo.org] for request handling and routing (yes, even this is pluggable!),
Jinja [http://jinja.pocoo.org/2/] and Mako [http://makotemplates.org] for templates, Doqu [http://packages.python.org/doqu] for modeling and more specialized
extensions, repoze.who [http://docs.repoze.org/who/1.0/] for authentication and so on;

	keep even some core functionality (such as routing and serving) as plugins
so the framework can be used for CLI, web or CLI+web purposes without adding
weight when it is not needed; moreover, the user can swap almost every
component without breaking other components.

Contents:

	Tutorial
	The simple echo script
	The naïve approach

	Using parser

	Using parser with subcommands

	Using parser: a cleaner way

	The Tool application

	Local settings

	Blog

	Glossary

Questions

Feel free to ask on the mailing list [http://groups.google.com/group/tool-users].

Similar projects

	Cement [http://pypi.python.org/pypi/cement/]:
	has a more complex and much more restrictive API than that of Tool.
In fact, Tool also has a complex API for extensions but it is optional.

	is based on outdated optparse and therefore is bound to implement some
features already present in argparse (e.g. nested commands and some
help-related stuff).

	depends on ConfigObj and stores the settings in ugly ini files while
Tool allows the configuration to be stored in any format (favouring the
clean YAML) including simple Python structures.

	stores the environment is stored in a module-level variable while Tool
stores it in extension objects within the application.

	has the notion of “namespaces” similar to Tool‘s “features”.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tool 0.8.0 documentation

Tutorial

The simple echo script

This example shows how to create a simple echo application with and without
Tool. First off, let’s design the command-line interface:

$./app.py echo "hello there!"
hello there!

That’s what we need. THe interface is extremely simple.

The naïve approach

The straightforward implementation (with barebones Python) only takes three
lines of code:

import sys

if __name__=='__main__':
 return u'You said {0}'.format(sys.argv[1])

It works!

However, the naïve approach is not scalable. When you have more than one
command and more than one argument, the code dealing with sys.argv becomes
bloated, overcomplicated and unmaintainable. You’ll need many
if/elif/.../else branches, you’ll need to provide helpful error messaes and
documentation. So we need a parser.

Using parser

...This is why getopt [http://docs.python.org/library/getopt.html] was introduced in early versions of Python and later
replaced by more powerful optparse [http://docs.python.org/library/optparse.html] which was in turn recently replaced with
argparse [http://docs.python.org/library/argparse.html]. We’ll use the latter:

import argparse
import sys

parser = argparse.ArgumentParser()
parser.add_argument('text')

if __name__=='__main__':
 args = parser.parse_args(sys.argv[1:])
 return u'You said {0}'.format(args.text)

This approach has several issues:

	the whole application is a single command; you cannot just plug in a
function as a subcommand with its own arguments.

	imperative approach to defining arguments makes it hard to separate them
from the dispatcher; therefore the application cannot be truly modular.

Using parser with subcommands

We should at least try to solve the subcommands problem. Argparse, unlike
getopt and optparse, directly supports the concept of subcommands. It
creates a subparser for each command so there can be a tree of nested commands,
e.g.:

$./app.py blog add "hello"
added #1
$./app.py blog ls
* hello

This is basically a namespace “blog” with two functions acting as subcommands
with each accepting its own set of arguments. A possible implementation:

import argparse

def blog_list(args):
 ... do something ...

def blog_add(args):
 id = add_to_database(args.text)
 print 'added #'+id

parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers()

blog_parser = subparsers.add_parser('blog')
blog_list_parser = blog_parser.add_parser('ls')
blog_list_parser.set_defaults(function=blog_list)
blog_add_parser = blog_parser.add_parser('add')
blog_add_parser.set_defaults(function=blog_add)
blog_add_parser.add_argument('text')

if __name__=='__main__':
 args = parser.parse_args()
 print args.function(args)

The problems:

	still imperative;

	a lot of boilerplate code related to commands.

Using parser: a cleaner way

Fortunately, there’s an excellent wrapper for argparse named argh [http://pypi.python.org/pypi/argh]. It
enables lazy declaration of commands and removes a lot of boilerplate code
while still allowing you to access the ArgumentParser:

from argh import *

def blog_list(args):
 ... do something ...

@arg('text')
def blog_add(args):
 id = add_to_database(args.text)
 print 'added #'+id

...not necessarily in the same module:

parser = ArghParser()
parser.add_commands([blog_list, blog_add], namespace='blog')

if __name__=='__main__':
 parser.dispatch()

The difference is huge: the script now uses declarative approach and therefore
command declarations can be safely decoupled from the dispatcher.

Now it would be great to have a means to assemble the commands in a uniform
way.

The Tool application

A Tool application is an tool.Application managed by a script. Let’s
go straight to an example:

from tool import Application

app = Application()

if __name__=='__main__':
 app.dispatch()

The method tool.application.Application.dispatch() does the same as
parser.dispatch() in the previous section. the application object contains
an ArghParser instance as app.cli_parser. So you can add and run the
commands this way:

app = Application()
app.cli_parser.add_commands([blog_list, blod_add])
if __name__=='__main__':
 app.dispatch()

But wait, why do we need this new abstraction level if it doesn’t do anything
what the argument parser itself can do? Well, it does. It is extensible. You
can configure the application object so that it loads certain extensions and
they contribute commands.

The configuration is just a dictionary with optional nested structures. We will
use YAML as it is much more readable than Python in terms of defining data
structures:

extensions:
 blog.setup: null

Save this to conf.yaml and let the application know about the configuration:

app = Application('conf.yaml')

This is equivalent to:

app = Application({'extensions': {'blog.setup': None}})

Now the application will load the module blog, find a function setup in
it and run it with two arguments: app (the application object itself) and
conf (the extension settings, in our case they are just set to None).

Let’s now write the blog module:

def blog_list(args):
 ...do somthing...

def setup(app, conf):
 app.cli_parser.add_commands([blog_list])

Then try running your management script:

$./app.py

...and you will see usage information with blog-list command in it! Now run
the command:

$./app.py blog-list

The function blog_list has been called and the result printed. Easy!

So to write pluggable applications with Tool you need to simply add a function
that accepts the application object and then deal with its API. The function
will be called automatically if it is mentioned in the extensions section of
the configuration. And you can configure the extension itself by providing some
data instead of null (or None), e.g.:

extensions:
 blog.setup:
 theme: green

...and the setup function will be:

def setup(app, conf):
 assert 'theme' in conf, 'You must specify the theme!'
 return conf

The returned value (the environment) will be stored in the application object
and can be later accessed this way:

from tool import app

env = app.get_extension('blog.setup')
theme = env['theme']

Why not just get_extension('blog')? Because a single extension can provide
multiple configuration functions (or even classes) for different usage
patterns. If you want a single name for all such functions if your extension or
even across multiple extensions (to make them swappable) you can use the
“feature” concept:

def setup_cli(app):
 pass
setup_cli.features = 'blog'

def setup_web(app):
 pass
setup_web.features = 'blog'

Or with some syntax sugar:

from tool.plugins import features

@features('blog')
def setup_cli(app):
 pass

@features('blog')
def setup_web(app):
 pass

Note that setup_cli and setup_web are mutually exclusive as they implement
the same feature. A third, mixed CLI/web function can be introduced to offer
both interfaces. Of course the web interface will have more dependencies that
the CLI one, so you can make sure that they are also configured:

from tool.plugins import requires

@requires('sqlobject.setup', 'werkzeug_routing.setup')
def setup_web(app):
 pass

The ORM and routing extensions also can be swappable (e.g. Autumn, SQLAlchemy
or Storm may be used instead of SQLObject), so it is safer to reference them by
feature name:

@requires('{orm}', '{routing}')
def setup_web(app):
 pass

The application will gather feature names from all configured extensions and
resolve them to actual paths to the configuring functions.

Note

The same API cannot be guaranteed across extensions that implement the same
feature. This is a problem yet to be resolved so the “feature” concept may
be changed in the future.

Local settings

Often you need to supply default project settings along with the code but have
certain values overloaded on your development box and keep passwords in a
separate config on the production machine. The common solution is having two
copies of settings: default and local. But how do we do it?

The simplest way would be to update the dictionary with another one from a
module which is excluded from versioning:

from local_conf import extra_settings

settings = {'foo': 123}
settings.update(extra_settings)

app = Application(settings)

This however does not work because the settings dictionary is multi-level. It
is usually desired to merge the dictionaries instead of replacing the whole
first-level branch. Tool ships with a convenience function for proper merging:

from tool.conf import merge_dicts

settings = merge_dicts(settings, extra_settings)
app = Application(settings)

Or as simple as this:

app = Application(settings, extra_settings)

Of course both “base” and “local” settings can be not only dict instances but
also strings, so this will work too:

app = Application('conf.yaml', 'local.yaml')

Blog

Having understood the basics, let’s try something practical.

A blog requires some database and a means to expose the records via web
interface.

Note

TODO.

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	tool 0.8.0 documentation

Glossary

TODO

http://docs.repoze.org/bfg/1.2/glossary.html#term-application-registry
(as inspiration)

	Application

	a WSGI application [http://wsgi.org/wsgi/]

	Application manager

	Manager for the application. Provides routing and
supports middleware. Implemented by
tool.application.ApplicationManager.

	CLI

	Command Line Interface. Implemented by tool.cli.

	Middleware

	ordinary WSGI middleware [http://wsgi.org/wsgi/Middleware_and_Utilities]. It doesn’t matter whether you wrap the
application into the middleware using the application
manager or not. However, introspection is much easier if you use the
manager.

	Routing

	the process of finding the right callable for given request. The
callable is then returned by the application. Tool uses
Werkzeug [http://werkzeug.pocoo.org] for routing.

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	tool 0.8.0 documentation

Index

 A
 | C
 | M
 | R

A

 	

 	Application

 	

 	Application manager

C

 	

 	CLI

M

 	

 	Middleware

R

 	

 	Routing

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/ajax-loader.gif

ext_strings.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

_static/down.png

commands.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

_static/up.png

_static/comment-close.png

ext_what.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

_static/comment.png

ext_http.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

_static/plus.png

ext_templating.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

signals.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

ext_who.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

ext_pagination.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

ext_documents.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

ext_storm.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

context_locals.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

ext_werkzeug_routing.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

debug.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

ext.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

cli.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

plugins.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

conf.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

log.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

ext_admin.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

application.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

ext_sqlobject.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

ext_analysis.html

 Navigation

 		
 index

 		tool 0.8.0 documentation »

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

